Vai al contenuto principale
Oggetto:
Oggetto:

SISTEMI DI SUPPORTO ALLE DECISIONI AZIENDALI (LAUREA MAGISTRALE)

Oggetto:

Anno accademico 2011/2012

Codice dell'attività didattica
LET0538
Docente
Federica Cena (Titolare del corso)
Corso di studi
[f005-c501] Laurea magistrale in Filosofia
[f005-c504] Laurea magistrale in Scienze storiche e documentarie
[f005-c506] Laurea magistrale in Comunicazione e culture dei media
[f005-c510] Laurea magistrale in Produzione e organizzazione della comunicazione e della conoscenza
Anno
1° anno 2° anno
Periodo didattico
Primo semestre - seconda parte
Tipologia
Per tutti gli ambiti
Crediti/Valenza
6
SSD dell'attività didattica
INF/01 - informatica
Mutuato da
http://www.di.unito.it/~cena/DSS.html
Oggetto:

Sommario insegnamento

Oggetto:

Obiettivi formativi

 

upload_Loghi_FSE11.JPGupload_corep110.jpg

L'obiettivo del corso è quello di fornire una panoramica delle metodologie e applicazioni informatiche avanzate maggiormente utilizzate oggi nel mondo delle imprese per analisi di dati a supporto dei processi di decisione. In particolare, i temi che verranno analizzati in questo corso saranno:
Data warehousing, OLAP e Data mining
- Knowledge management
- Uso di datawarehouse e data mining per il supporto alle decisioni
- Applicazioni in ambito economico e aziendaleVerrà utilizzato in laboratorio un SW applicativo per datawarehousing e datamining, per realizzare un progetto di analisi di dati per decisioni di marketing. Esame: orale; verrà richiesta la realizzazione di un progetto

 

The aim of the course i sto offer a wide view on the most important methodologies and techniques used by industries to analyse data in order to support the decision process. In particolar, the topic discussed in the course will be the following one: Data warehousing, OLAP e Data mining
- Knowledge management
- how to use datawarehouse and data mining in order to  support decisions
- Applications for business. In the laboratori, we will use a software for datawarehousing and datamining, in order to design and develop a project of data analysis in order to support marketing decision.

 

Oggetto:

Programma

1 parte: Data warehouse. Introduzione al data warhouse e principi di CRM. Ciclo di vista di un data warehouse. Analisi e riconciliazione delle fonti. Progettazione concettuale e logica di un data warehouse. Modello multidimensionale.

2 parte: Data Mining. Introduzione al data mining, analisi OLAP, clustering,  alberi decisionali, reti neurali. Use case di applicazioni aziendali.

1 part: Data warehouse. Introduction to data warhouse.  CRM. datawarehouse life’s cicle. Source analysis. Conceptual and logical design of a data warehouse. Multidimensional model.

2 part: Data Mining. Introduction to data mining, OLAP, clustering, decistion tree, neural network. Use cases.

Testi consigliati e bibliografia

Oggetto:

 C. Todman: Designing a Data warehouse, Prentice Hall 2001
da fare: fino al capitolo 6 compreso
cap 1- tutto
cap 2- tutto
cap 3 (con il livello di dettaglio visto a lezione)-
cap 4 (no da pag 99 a pag 115- First-generation solution for time)
cap 5 (solo lettura da pag 133 a pag 158- Dot modeling workshop)-
cap 6 (no da pag 180-185 Constraints)

C. Berry, B. Linoff: Data mining, Apogeo 2003
da fare: 
prima parte: cap 1- 
seconda parte: cap 5
terza parte: da leggere (facoltativa)

 

 C. Todman: Designing a Data warehouse, Prentice Hall 2001

C. Berry, B. Linoff: Data mining, Apogeo 2003



Oggetto:

Note

 

Le lezioni si divideranno in una parte frontale, in cui verranno presentati i principali concetti teorici,  le metodologie e le tecniche di analisi dei dati, e in una parte pratica di laboratorio, in cui gli studenti saranno chiamati alla realizzazione di un progetto utilizzando gli strumenti visti nelle lezioni teoriche. 

the lessons will be contituted by  class lessons (where the main theoretical concepts, metodologies and techniques of analysis will be presented) and laboratori lessons (where the students will be asked to develop a project implementino such techniques). Part of the lesson will be made available to students. 

 

Oggetto:
Ultimo aggiornamento: 08/04/2014 11:52

Location: https://scienzestoriche.campusnet.unito.it/robots.html
Non cliccare qui!